
www.manaraa.com

DOCUMENT RESUME

ED 305 903 IR 013 758

AUTHOR Linn, Marcia C.
TITLE Autonomous Classroom Computer Environments for

Learning. Progress Report and Annotated
Bibliography.

INSTITUTION California Univ., Berkeley. School of Education.
SPONS AS:NCY National Science Foundation, Washington, D.C.
PUB DATE May 88
GRANT MDR-84-70364
TOTE 13p.
PUB TYPE Reference Materials - Bibliographies (131) -- Reports

- Research/Technical (143)

EDRS PRICE MFO1 /PCO1 Plus Postage.
DESCPIPTORS *Academic Achievement; Annotated Bibliographies; Case

Studies; *Classroom Environr 7t; Comparative
Analysis; *Computers; Computer Science Education;
Feedback; High Schools; *High School Students;
*Intermode Differences; *Programing

ABSTRACT

This document provides both a brief progress report
for the Autonomous Classroom Computer Environments for Learning
(ACCEL) project and an annotated bibliography of publications from
this project, the Computers and Problem Solving Project, and other
recent publications from the ACCCEL (accessing the Cognitive
Consequences of Computer Environments for Learning) project and the
ARP (Adolescent Reasoning Project). Two major project activities are
described. One of the activities consisted of designing expert
solutions to computer programming problems in order to communicate
the techniques used by experts to solve programming problems.
Designed to evaluate the effectiveness of these expert solutions, the
other activity consisted of contrasting three educationally
defensible alternatives for using these approaches and assessing the
relative effectiveness of these approaches in 14 pre-college
claasrooms. The findings of this assessment are reported: students
either completed all three activities or one of the three; there were
significant differences between the three different conditions for
using the expert solution; and students learned more about
programming when they participated in all activities from writing the
program to reading the expert solution. Relationships between
performance on the case study and the instructional provisions in the
classroom were also assessed, and three factors were found to
contribute to student learning: (1) access to computers; (2) feedback
on student work; and (3) individual and small group assistance by the
teacher. The project report contains four references, and the
annotated bibliography contains 35 references. (EW)

Reproductions supplied by EDRS are the best that can be made
from the original document.

www.manaraa.com

inek wrewrwor w 44141:1411d 4
4/1610144014 Research and Imprmerent

TONAL RESOURCES INFORMATION
CENTER (ERIC)

O Tins document Ms been reproduced as
meowed from the person or organization
Ontimeeng iL

0 Minor changes 4inittve, been made to improveve

Pants of vow or opinions stated on this clocv- Progress Report for themeal 00 not neamearity represent °Must
OERI 91 policy

Autonomous Classroom Computer
Environments for Learning
National Science Foundation Grant

MDR 84-70364

Marcia C. Linn, Principal Investigator
May, 1988

The Autonomous Classroom com-
puter Environments for Learning
project set out to substantially in-
crease the learning outcomes from
programming instruction by a) analy-
zing expert techniques for solving
programming problems, b) identi-
fying ways to communicate key
techniques used by experts to pre-
college students in programming
courses, and c) determining whether
these expert approaches to problem
solving varied in effectiveness
depending on the instructional
provisions found in pre-college
programming courses and the
learning activities of students.

Primary Activftles During Quarter

While programming represents a
relatively mature use of technology in
instruction, clear guidelines are not
available to teachers on the most
effective methods of teaching pro-
gramming. Historically, programming
classes have built on the experiences
of expert programmers who taught
themselves. Students were provided
with assignments and access to
computers and were expected to
learn through trial and error and
unguided discovery. Feedback
consisted primary of what happened
when students ran their programs.

The initial focus of the ACCEI project
was to examine the instructional
provisions in existing programming
classes (e.g., Linn, 1985; Linn &

Dalbey, 1985; Unn, Sloane, &
Clancy, 1987). We found that some
teachers continued to emphasize
discovery learning, some emphasized
problem solving procedures, and
some provided extensive off-line
feedback on student problem solvinp
behavior.

The project also analyzed the behav-
ioi of expert programmers. This
analysis suggested that students
need opportunities to practice their
programming skills, but they also
need fairly explicit instruction in
algorithms and procedures for solving
new problems. Effective program-
mers build a library of algorithms or
what the project has called "tem-
plates" that represent complex
programming procedures. Experts
tend to conceptualize these proce-
dures in a generalized format which
could be referred to as pseudo-code.

To communicate the techniques used
by experts to solve programming
problems, the ACCEL project de-
signed expert solutions to computer
programming problems. These
expert solutions illustrate skills used
by expert programmers, but rarely
taught in pre-college, and even
college, programming courses. First,
the expert solutions provided general-
izable templates represented in
pseudocode. Second, the expert
solutions illustrated the design
decisions that programmers typically
engage in to select between altema-

2

tive appealing methods for solving a
programming problem. In order to
illustrate these design decisions, the
case studies or expert solutions were
of fairly complicated computer
programs, typically 310 - 1000 lines
long. Third, the expert solutions
illustrated how experts intelligently
search for program bugs, rather than
linearly simulating the operator' of a
program. Fourth, the expert solutions
emphasized implementing computer
programs piece by piece, and testing
each piece as it is implemented.
Such a procedure greatly reduces the
debugging task, because when a
problem arises one knows that the
bug is in the new code that is being
tested. In addition, the expert solu-
tions emphasized how programmers
test their programs. They discussed
the use of typical cases, as well as
the use of extreme cases. As a
result, the expert solutions pointed
out a strategy for testing programs
not commonly used by pre-college
students. Pre-college students often
fail to test their programs at all, or use
haphazardly selected test cases,
rather than systematically investigat-
ing the accuracy of their programs.

The expert solutions also imple-
mented a recommendation commonly
made by expert programmers. Many
experts report that they learned more
about programming by reading the
programs written by others than by
writing programs on their own. In a
book entitled by Programmers at
Work, for example, Susan Lammers
interviewed Charles Simonyi, who
reported "I had the complete listings
of the Algol compiler which I had
studied inside and out ... he SNOW-
BAL compiler I wrote a: Eericeley, for
example, was just a variation on the
same theme. I think that the Algol
program is still in my mind and
influences my programming today. I

always ask myself, if this were part of
the Algol Compiler, how would they
do it." The expert solutions help
students learn how to use the pro-
grams of others to guide their own
programming activities.

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."

www.manaraa.com

Classroom investigation

To evaluate the effectiveness of the
expert solutions, the ACCEL project
has contrasted three educationally
defensble alternatives for using these
approaches and assessed the
relative effectiveness of these ap-

Ihes in fourteen pre-college
clatarooms.

To use expert solutions, students
couPd: (e) write the program for the
problem, (b) read the experts'
description of the program solution,
(c) examine the code generated by
the expert, (d) answer study ques-
tions about the expert solution, in
order to analyze the solution more
carefully; and (e) take a case study
test which assesses their understand-
ing of the expert solution. To investi-
gate the effed of 'he expert solution,
we contrasted the three conditions
shown in Table 1. The first conditim
included all possble activities. The
second condition included all of the
activities, except having the students
write the program themselves.
Students started with the expert's
program and went from there. The
third condition omitted the description
of the expert solution, but did include
the expert code. Thus the students
wrote the program and then looked at
the code generated by the expert.

Table 1: Description of
Conditions

Progtam
=Soluhon

& Code

Expert

& Code

Program
& Expert
Code

Wilts the program
tor the problem

z
5X

Read the expert
solution

Z Z
Run the expert
code Z Z IX

Answer the study
questions

Z Z Z
Tauke Case
Study

the
Test Z X 5X

To compare these three conditions,
we first administered a case study,
called Bloat(Letters, to all participat-
ing classes and established a
baseline of performance. Then we
randomly assigned classes to one of

Figure 1: Effect of Case
Study Condition on

Student Pedonnancie
N = 10 clones

Block Letters
(Mean Rank)

Program + Expert Sokrtion + Code

5.125 4.5

Caw Study Test

Calendar
(Mom Rak)

eqP)remdutoncrn

+ Code

IExpert Solution
Code

Prgram
Evert

o
Code

Case Study Test

Main effect for condition. Effect expert solution
F(3,9) * 7 35, pc 05 T(2,91 3 82 p< 05

the three conditions and administered
a second case study called Calendar.
As shown in Figure 1, ten classes
completed both cases. There vere
significant differences betweeii the
three conditions for using the expert
solution. Students learned more
about programming when they
participated in all of the activities,
from writing the program to reading

the expert solution. Students were
least successful on the case study
test when they were not given access
to the expert solution, but were only
given the opportunity to run the
expert code. Thus, having expert
commentary on the code appears to
be extremely helpful for students
when learning about computer
programming.

Classroom Characteristics

We assessed the relationship be-
tween performance on the case study
and the instructional provisions in the
classroom. The instructional provi-
sions we assessed are shown in
Table 2. We determined the charac-
teristics of classrooms by asking
students and teachers to report on
the classrooms (Sloane & Linn, in
press). In general, students and
teachers were in good agreement
concerning the nature of classroom
activities.

Analysis of the relationship between
classroom characteristics and per-
formance on the case study revealed
that three factors were important to
student learning. First, as would be
expected, students benefit from
access to computers. In pre-college
settings, access to computers is
primarily a function of the teachers
willingness to be present in the

Table 2: Classroom Characteristics Questionnaire: Variation Across Classes

Class Variable Range of Scores (F-valuel interpretation.
Computer Access
days on-lIne 2.30 to 5.01 (8.56') 1-2 days to 4-5 days
Hours computer avaliable 1.74 to 2./1 (13.21') 0-5 hrs/wk to 16+ hrs
Prop. on-line assignments 3.14 to 5.00 (10.35') About 1/2 to almost all
ExplIdtnese
days teacher lectures 1.67 to 4.00 (20.17') 0-1 days to 3-4 days
days teacher works indiv. 1.50 to 3.86 (6.45'1 0-1 days to 3-4 gays
Require. for computer access 0.00 to 3.00 (10.65') None to show pan 4, code
Quality of explicit instruction 2.84 to 3.87 (9.76') Rarely to often
(how often teacher uses strategies)
Feedback
Presence of feedback 3.33 to 4.70 (12.58') Sometimes to always
Type of feedback 2.57 to 4.00 (6.96') Rarely to often
Tests on language features 2.35 to 3.91 (6.96') Rarely to often
Tests on Pascal procedures 1.80 to 2.69 (3.69') Rarely to sometimes
Grading criteria 2.00 to 4.00 (4.63') Correctness only to correct

& design, style

F (18,340), p <.001

www.manaraa.com

wei

classroom before or after school.
Therefore, access to the computer is
partly a school variable and partly a
teacher variable. Students with
greater access to computers were
more ikely to succeed on both the
computer program and the case study
test.

Second, students benefited from
feedback on their work. Classes
where assighments were returned
with comments and returned regularly
were more successful on the pro-
gramming assessments than were
classes where there was less feed-
back available.

Third, students wers more successful
when teachers were able to provide
individual assistance and worked with
small groups of students on particular
problems.

In summary, classrooms offering
programming differ substantially from
one to another and these differences
do affect student learning.

Conclusions

We are still identifying characteristics
of effective programming instruction
and analyzing the relationship be-
tween student learning activities,
classroom characteristics, and
programming proficiency. The ACCEL
studies suggest that curriculum
materials that emphasize techniques

used by experts and classroom
provisions that provide access to
computers, feedback on problem
solutions, and explicit instruction on
areas of difficulty will contribute to
effective understanding of program-
ming. The case studies of expert
solutions appear to impart the design,
testing, and debugging skills students
need for successful programming.
Furthermore, the effectiveness of
these materials varies with the
characteristics of classrooms.

Future Directions

Increases in computer access are
difficult to implement given the time
demands on pre-college teachers and
the preparation level characteristic of
those teaching programming. As a
result, it seems useful to increase
student access to expert solutions and
to find ways to dynamically present
th9 information available in expert
solutions such that they can be used
by students in independent or self-
paced leaming situations. This
question is the :ocus of our subse-
quent work.

References

Linn, M. C. (1985). The Cognitive
Consequences of Programming In-
struction in Classrooms. Educational
Researcher, 14(5), 14-29.

Linn, M. C. & Dalbey, J. (1485).
Cognitive Consequences of Program-
ming Instruction: Instruction, Access,
and Ability. Educational Psychologist,
20(4), 191-206.

Linn, M. C., Sloane, K. D., & Clancy,
M. J. (1987). Ideal and Actual Out-
comes from Precollege Pascal
Instruction. Joural of Research in
Science Teaching, 24(5), 467-490.

Sloane, K. D. & Linn, M. C. (in press).
Instructional Conditions in Pascal
Programming Classes. In R. Mayer
(Ed.), Teaching and Learning Com-
puter Programming: Multiple Per-
spectives.

Annotated bibliography available upon
request. Please write:

Marcia C. Linn
Graduate School of Education
Tolman Hall
University of California at Berkeley
Berkeley, CA 94720

This material is based upon research
supported bu the National Science Foun-
dation under grant nos. DPE -84 -70364
and MDR-84-70514. Any opinions,
findings, and conclusions or recommenda-
tions expressed in this publication are
those of the author and do not necessarily
reflect the views of National Science
Foundation.

4

www.manaraa.com

ANNOTATED BIBLIOGRAPHY
Selected Publications

ACCEL Project

1. Husic, F., Linn, M. C., & Sloane, K. (1988). Adapting instruction to the
cognitive demands of programming Unpublished manuscript, University of
California, ACCEL Project, Berkeley.

This study examined class conditions and programming instruction for 8
introductory and 8 advanced placement Pascal classes. While introductory
students required more explicit or direct instruction, advanced placement
students performed better in situations that provided less guidance and more
autonomy over their learning environment. The results suggest that
curriculum for programming instruction needs to be adaptable in order to
match the cognitive demands of different learning groups.

2. Sloane, K. & Linn, M. C. (in press). Instructional conditions in Pascal
programming classes. In R. Mayer (Ed.), Teaching and learning computer
programming: Multiple research perspectives. Hillsdale, NJ: Lawrence
Erlbaum Associates.

This study investigates the relationship between two measures of students'
programming proficiency and instructional practice in 14 Pascal
programming classes at the high school level. Proficiency measures assessed
proficiency in writing programs and in understanding, analyzing, and
modifying existing programs. We found that instructional conditions,
including explicit emphasis on problem solving, extensive computer access,
and precise feedback, are highly predictive of students' performance on each
of the measures. The results from this study help clarify the nature of
exemplary instructional environments and encourage researchers to examine
explicit instruction more closely.

3. Rohwer, W. D. & Thomas, J. W. (1988). The role of autonomous problem-
solving activities in learning to program. Unpublished manuscript, University
of California, ACCEL Project, Berkeley.

Variation in high school students' achievement in computer programming
courses in Pascal was examined as a function of individual differences in self-
reported engagement in autonomous problem-solving activities and of
differences in features of the students' courses. Also examined were
relationships between course features and extent of engagement in different
problem-solving activities. A total of 107 students in eight Introductory

5

www.manaraa.com

Annotated Bibliography 2

courses and 79 students in seven Advanced Placement courses completed a self-
report questionnaire about their problem-solving activities, a second
questionnaire about features of their courses, and a criterion test requiring the
reformulation of code in an existing program. The results of regression
analyses indicated that student differences in autonomous pmblem-solving
activities account for substantial variance in criterien performance, especially
in Advanced Placement courses. Whereas these relationships generally held
across courses, certain features of these courses were related to differences:;.
engagement in selected problem-solving activities.

4. Kersteen, 1, Linn, M. C., & Clancy, M. (1988). Previous experience in the
learning of computer programming: The computer helps those who help
themselves. Journal of Educational Computing Research, 4(3), 321-333.

This study investigates the role of previous experience with computers as a
predictor of performance in college computer science courses. We discuss the
interaction of gender, previous experience with computers, and computer
science course performance. Results revealed disparate amounts of prior
computing experience among males and females. Nevertheless, males and
females earned similar grades in introductory courses.

5. Gelman, R. & Linn, M. C. (1987). On the use of hands-on materials in science
class. Continuum (A publication of PATHS and PRISM), May/June, 3.

This article discusses implications of the Establishing a Research Base report
(C&PS report #8) for classroom practice.

6. Linn, M. C., Sloane, K., & Clancy, M. (1987). ideal and actual outcomes
from Pascal programming instruction. Journal ofResearch in Science
Teaching, 24(5), 467-490.

This paper investigates the relationships between instructional practice and
learning outcomes in 14 Pascal programming classes at the high school level.
In particular, we examine the role of extensive on-line access, explicit
instruction, and extensive feedback in instructional practice.

7. Mandinach, E. & Linn, M. C. (1987). The cognitive effects of computer
learning environments. Journal of Educational Computing Research, 2(4),
411-427.

In this study we examined the student characteristics that lead to success in
programming courses. Results indicated that the most successful students did
not progress far along the chain of cognitive accomplishments of

4

www.manaraa.com

Annotated Bibliography 3

programming, gained their skills primarily from classroom instruction, and
were not necessarily high in general ability or owners of home computers.
Implications for classroom instruction are discussed.

8. Clancy, M. (1985). Large programs in Advanced Placement Computer
Science. The Computing Teacher, 12(9), 60-61.

This paper discusses the advantages of using large programs to teach computer
science.

COMPUTERS AND PROBLEM SOLVING PROJECT (C&PS)

1. Eylon, B. & Linn, M. C. (in press). Learning and instruction: An examination
of four research perspectives. Review of Educational Research.

Recent research in science education examines learning from four distinct
perspective which we characterize as a focus on concept learning, a
developmental focus, a differential focus, and a focus on problem solving.
This paper illustrates how these perspectives, considered together, offer new
insights into the knowledge and reasoning processes of science students. An
integrated examination of the four research perspectives strongly suggests that
in-depth coverage of several topics will teach students far more than will
fleeting coverage of numerous science topics.

2. Friedler, Y., Nachmias, R., & Linn, M. C. (in press). Learning scientific
reasoning skills with microcomputer-based laboratories. Journal of Research
in Science Teaching.

This study contrasted the effects of two aspects of scientific investigation:
observation and prediction. Students' scientific reasoning skills were
developed in the content domain of temperature and heat energy using a
microcomputer-based laboratory (MBL) environment. Four eighth grade
classes were divided into two emphasizing observation and two emphasizing
prediction. Findings included equal gains for observation and prediction
groups in subject matter knowledge and the ability to use scientific reasoning
skills as part of the problem-solving process. Differences were found between
students' development of observation and prediction skills and the
incorporation of these skills into their problem-solving process.

3. Friedler, Y., Nachmias, R., & Songer, N. (in press). Teaching scientific
reasoning skills: A case study of a microcomputer-based curriculum. School
Science and Mathematics.

www.manaraa.com

Annotated Bibliography 4

To prepare students to live in and contribute to our rapidly changing society,
science educators must look for ways to encourage and develop critical
thinking skills In our study, we investigated the educational potential of
microcomputer-based laboratories to foster such inquiry skills in an eighth-
grade physical science curriculum. Of the project's three main objectives, (1)
to teach the subject matter, (2) to teach graph interpretation skills, and (3) to
foster students' scientific reasoning skills, this paper focuses on the third
objective -- namely the development and implementation of a scientific
reasoning Skill Development Mode.

4. Linn, M. C. (in press). Designing science curricula for the information age.
Colorado Springs, CO: Biological Sciences Curriculum Study.

Recent research on provides guidance to those designing curricula for the
information age. This paper summarizes procedures for designing science
curricula based on current instructional theories. Questions addressed include
how these curricula will elicit and sustain lifelong interest in learning, how
they can help students construct robust, general conceptions of science
phenomena to eventually replace less powerful conceptions, and how they can
prepare students for future learning.

5. Linn, M. C. (in press). Establishing a science and engineering of science
education. In A. di Sessa, M. Gardner, J. Green, F. Reif, & A. Schoenfeld
(Eds.), Toward a scientific practice of science education. Hillsdale, NJ:
Lawrence Erlbaum Associates.

This paper summarizes a conference, entitled "Toward a Scientific Practice of
Science Education," held at the Lawrence Hall of Science, Berkeley,
California, and jointly sponsored by the Lawrence Hall of Science and the
Graduate School of Education at the University of California, Berkeley.

6. Linn, M. C. (in press). Science education and the challenge of technology. To
appear in Informational technologies and science education (1988 yearbook of
the Association for the Education of Teachers in Science). Washington, D. C.:
ERIC Clearinghouse.

This paper analyzes the relationship between science education and technology
over the last 15 years, identifying promising trends, and recommending
policies for the future. Efforts to incorporate technology into science
education fall into three stages. At first, technological tools such as computer-
presented text and question-and-answer software were used to mimic
established instructional procedures. In the second stage, progress involved

8

www.manaraa.com

Annotated Bibliography 5

making expert tools such as simulations, microworlds, and real-time data
collection available to students. Users found that these tools were not sufficient
to teach the thinking skills of experts but could be effective if used with
curriculum materials that drew on research on learning and instruction. In the
third stage educators are redefining the roles of teachers, reLnology,
textbooks, and experiments, as well as rethinking the goals of science
education. The resuit is an improved model of instruction.

7. Linn, M. C. & Songer, N. B. (1988, April). Cognitive research and
instruction: Incorporating technology into the science curriculum. Paper
presented at the annual meeting of the American Educational Research
Association, New Orleans, LA.

In these investigations, we combine advances from research on learning
and instruction with advances in educational technology. Our goal is to
improve students' understanding of aspects of thermodynamics. The
technological advance we study, real-time data collection, frees students
from the tedium of recording, analyzing, and displaying data. The
challenge to curriculum designers involves taking full advantage of this
capability in teaching students about thermodynamics. The advances in
research on learning and instruction we incorporate characterize the
learner as a) actively constructing a view of the natural world, b)
coming to science class with isolated conceptions rather than integrated
ideas, c) benefitting from robust models of scientific phenomena, and d)
capable of learning self-monitoring skills.

8. Songer, N. (1988, June). Using the microcomputer in an elementary
preservice teacher training workshop. Presentation to the National
Educational Computing Conference (NECC), Dallas, Texas.

9. Linn, M. C. (1987). Learning more with computers as lab partners (An apple
a day). Science and Children,NovIDec, 15-18.

This paper presents the learning outcomes and advantages of using computers
as silent laboratory partners in a one-semester physical science class. In
particular, outcomes from using microcomputer-based laboratory (MBL)
software using temperature probes, light pro -s, and heat pulsars to collect
data are discussed.

10. Stein, J. (1986-87). The computer as lab partner: Classroom experience
gleaned from one year of microcomputer-based laboratory use. The Journal
of Educational Technology Systems, /5(3), 225-236.

www.manaraa.com

Annotated Bibliography 6

This paper presents a formative evaluation of one microcomputer-based
laboratory (MBL) system and its accompanying semester-length junior high
physical science curriculum. This paper draws on data from classroom
observations and student and teacher interviews to outline some pinnacles and
pitfalls encountered in a year of MBL use, and incorporates these into a model
for the integration of MBL into science curricula.

11. Linn, M. C., Layman, J., & Nachmias, R. (1987). Cognitive consequences of
microcomputer-based laboratories: Graphing skills development.
Contemporary Educational Psychology, 12(3), 244-253.

Students' difficulties with graph interpretation may stem from their
inappropriate representations of graphs. Real-time data collection and graphic
display of results offer a dynamic representation of graphing. Evaluation of
student response to this instruction reveled that students gained robust and
coherent understanding of graphing that generalized to new knowledge
domains.

12. Nachmias, R. & Linn, M. C. (1987). Evaluations of science laboratory data:
The role of computer-presented information. Journal of Research in Science
Teaching, 24(5), 491-506.

This paper examines how students critically evaluate information acquired in
the science laboratory, par .ularly computer-presented information. We
examine the role of factors that influence such assessment, like knowledge of
science principles, and contrast the activities in a science laboratory with
current thinking about epistemology in the philosophy of science.

13. Linn, M. C. (1986). Computer as Lab Partner Project. Teaching Thinking
and Problem Solving, May /June. (Hillsdale, NJ: Lawrence Erlbaum
Associates.)

This article provides an overview of the Computer as Lab Partner Project, its
focus, objectives, and preliminary activities.

14. Linn, M. C. (1987). Establishing a research base for science education:
Challenges, trends, and recommendations. Journal of Research in Science
Teaching, 24(3), 191-216.

On January 16-19, 1986, mathematicians, scientists, educators, and curriculum
and technology experts convened at Berkeley for a planning conference on
research and science education. This report describes the themes that emerged
from the discussions at the conference, and makes four recommendations

10

www.manaraa.com

Annotated Bibliography 7

intended to encourage the development of an integrated research base in
science education and to infuse science teaching with ideas and techniques
informed by research and dedicated to meeting the challenge of change in a
technological world.

15. Linn, M. C. (Ed.). (1987). Cognitive consequences of technology in science
education [Special issue]. Journal of Research in Science Teaching, 24(4/5).

These issues feature 12 papers on the use of technology in science education.

16. Kirkpatrick, D. (1986). Technology in education: A middle school teacher's
experience. Technology and Learning (Lawrence Erlbaum Associates
newsletter.)

In a column entitled "Teacher's Perspective," Doug Kirkpatrick, a mentor
teacher at Foothill Middle School, shares his experiences in using
microcomputer-based laboratories and in training science teachers to
incorporate technology into their programs.

17. Songer, N. (1987). Encouraging conceptual constructions: Exemplary
software tools and their role in exemplary learning environments.
Unpublished manuscript, University of California, Education in Math,
Science, and Technology, Berkeley.

18. Linn, M. C. (1987). Education and the challenge of technology [Proceedings
of a conference on Technology and Teacher Education]. Cupertino, CA:
Apple Computer, Inc.

To exlmine the potential of technology for improving education in general and
teacher education in particular, the Graduate School ofEducation at the
University of California, Berkeley, with support from Apple Computer,
invited leading educators, administrators, researchers, industry experts, and
state of to a conference on Technology and Teacher Education in
Monterey, California from August 5 - 8, 1986. This report summarizes the
proceedings from this conference and offers four interrelated
recommendations to foster the infusion of technology into education.

19. Nachmias, R., Stein, J. S., & Kirkpatrick, D. (1987, April). Computer as lab
partner: Students' subject-matter achievements. Paper presented at the annual
meeting of the National Association for Research in Science Teaching,
Washington, D. C.

11

www.manaraa.com

Annotated Bibliography 8

In order to carry out the studies of the Computer as Lab Partner Project, a
semester-length microcomputer-based laboratory (M13L) physical science
curriculum was developed and has been refined and evaluated over three
years. This paper presents an account of the preliminary development and
design of that curriculum, evaluates the curriculum in terms of the students'
subject matter achievements, and suggests ways in which MBL may be
effectively integrated with science instruction to produce conceptual gain.

20. Stein, J, S., Nachmias, R., & Fried ler, Y. (1987). An experimental
comparison of two science laboratory environments: Traditional and
microcomputer-based. Unpublished manuscript, University of California,
Computers and Problem Solving Project, Berkeley.

This paper examine the cognitive consequences for science students of two
modes of laboratory data collection: traditional manual data recording and a
system of microcomputer-based laboratories (MBL). Classroom processes,
learning outcomes, and students' perspectives for a boiling-point experiment
in each environment are compared. The advantages and disadvantages of MBL
are discussed, along with provisions in each environment that foster the goals
of science laboratory learning.

21. Nachmias, R., Friedler, Y., & Linn, M. C. (1987). The role of programming
environments in Pascal instruction. Unpublished manuscript, University of
California, Computers and Problem Solving Project, Berkeley.

Programming environments that support the problem-solving skills of experts
are being developed for novices. Two experiments investigated the advantages
of the interactive programming features and optional tools in the Macintosh
Pascal and Instant Pascal programming environments. The first experiment
assessed when precollege programming students use the unique capabilities of
the environment. The second experiment employed activities to enhance
debugging skill and compared performance of students using Instant Pascal to
that of students using a traditional programming environment. Results suggest
techniques for using the tools and demonstrate possible advantages.

Other recent publications from the ARP* and ACCCEL** Projects.

1. Hyde, J. S. & Linn, M. C. (1988). Gender differences in verbal ability: A
meta-analysis. Psychological Bulletin, 104(1), 53-69.

12

www.manaraa.com

Annotated Bibliography 9

2. Linn, M. C. & Dalbey, J. (1986). Cognitive consequences of programming
instruction: Instruction, arcess, and ability. Educational Psychologist, 20(4),
191-206.

3. Hyde, J. S. & Linn, M. C. (Eds.). (1986). The psychology of gender:
Advances through meta-analysis. Baltimore: Johns Hopkins University Press.

4. Linn, M. C. & Petersen, A. C. (1986). A mete- analysis of gender differences
in spatial ability: Implications for mathematics and science achievement. In J
S. Hyde & M. C. Linn (Eds.), The psychology of gender: Advances through
meta-analysis (pp. 67-10i). Baltimore: Johns Hopkins University Press.

5. Linn, M. C. (1985). Fostering equitable consequences from computer
learning environments. Sex Roles, 13, 22' -240.

6. Linn, M. C. (1985). The cognitive consequences of programming instruction
in classrooms. Educational Researcher, 14(5), 16-29.

* ARP: Adolescent Reasoning Project

*'k ACCCEL: Assessing Et! Cognitive Consequences of Computer Environments
for Learning

13

1

